ny
rational solver -- pun intended -- knows that the ratio
of any pair of
integers produces a pattern of decimal digits that will
repeat endlessly.
Thus does the finite have the power to generate the
infinite.
1/2 =
|
0.500000000000...
|
|
2/3 =
|
0.666666660000...
|
1/3 =
|
0.333333333333...
|
|
2/5 =
|
0.400000000000...
|
1/4 =
|
0.250000000000...
|
|
2/7 =
|
0.285714285714...
|
1/5 =
|
0.200000000000...
|
|
2/9 =
|
0.222222222222...
|
1/6 =
|
0.166666666666...
|
|
3/4 =
|
0.750000000000...
|
1/7 =
|
0.142857142857...
|
|
3/5 =
|
0.600000000000...
|
1/8 =
|
0.125000000000...
|
|
3/7 =
|
0.425671428571...
|
1/9 =
|
0.111111111111...
|
|
3/8 =
|
0,375000000000...
|
As shown above, the repeating pattern
ranges from utterly
simple (000..., 111..., 222..., 333...) to the not so
simple (142857142857...).
|